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Deformation-induced lateral migration of a bubble slowly rising near a vertical plane
wall in a stagnant liquid is numerically and theoretically investigated. In particular,
our focus is set on a situation with a short clearance c between the bubble interface
and the wall. Motivated by the fact that numerically and experimentally measured
migration velocities are considerably higher than the velocity estimated by the
available analytical solution using the Faxén mirror image technique for a/(a+c) � 1
(here a is the bubble radius), when the clearance parameter ε(= c/a) is comparable
to or smaller than unity, the numerical analysis based on the boundary-fitted finite-
difference approach solving the Stokes equation is performed to complement the
experiment. The migration velocity is found to be more affected by the high-order
deformation modes with decreasing ε. The numerical simulations are compared with a
theoretical migration velocity obtained from a lubrication study of a nearly spherical
drop, which describes the role of the squeezing flow within the bubble–wall gap.
The numerical and lubrication analyses consistently demonstrate that when ε � 1, the
lubrication effect makes the migration velocity asymptotically µV 2

B1/(25εγ ) (here, VB1,
µ and γ denote the rising velocity, the dynamic viscosity of liquid and the surface
tension, respectively).
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1. Introduction
Recent technical progress in generating microbubbles (e.g. Garstecki et al. 2006;

Makuta et al. 2006), including potentials as actuator and sensor, has enhanced the
range of applications, e.g. additives to reduce turbulence friction (Serizawa et al.
2005), drug delivery capsules (Shortencarier et al. 2004) and contrast agents (Correas
et al. 2001). In many situations, a bubble encounters a boundary wall during its
transport process, and a hydrodynamic interaction occurs, as characterized by the
inter-scale between the bubble and the wall. In practice, it is of primary importance
that the bubble undergoes a repulsive or attractive force in the wall-normal direction,
which causes a lateral migration (Leal 1980; Magnaudet, Takagi & Legendre 2003;
Hibiki & Ishii 2007) and determines the bubble distribution, when translating parallel
to the wall. As the simplest model system, one might consider the phenomenon of
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a spherical bubble rising near a vertical infinite plane wall in a creeping (Stokes)
flow. However, there is no mechanism to generate the lateral migration force, as
kinematic reversibility is ensured by symmetry of the boundary and by linearity
in the Stokes equation (Leal 1992, chapter 4). In fact, the migration force stems
from nonlinearities in the advective momentum transport (Cox & Brenner 1968;
Ho & Leal 1974; Vasseur & Cox 1976, 1977; Cox & Hsu 1977; McLaughlin 1993;
Cherukat & McLaughlin 1994; Becker, McKinley & Stone 1996; Magnaudet et al.
2003) and/or the interfacial deformability (Chaffey, Brenner & Mason 1965; Chan &
Leal 1979; Shapira & Haber 1988; Uijttewaal, Nijhof & Heethaar 1993; Uijtewaal &
Nijhof 1995; Magnaudet et al. 2003; Wang & Dimitrakopoulos 2006) to break the
symmetry.

For a tank-treading vesicle translating parallel to the wall, the migration force was
theoretically obtained by Olla (1997), who prescribed the vesicle shape as a strongly
non-spherical ellipsoid, and the theory was experimentally validated by Callens et al.
(2008). For a bubble or drop, the shape cannot be prescribed since it obeys the Laplace
law and depends on the surrounding fluid flow. The theoretical success in solving the
non-trivial problem of the deformation-induced migration of the bubble or drop was
made by Magnaudet et al. (2003) using the Faxén mirror image technique and the
Lorentz reciprocal theorem. However, Wang & Dimitrakopoulos (2006) performed a
numerical study on the motion of a drop with the same viscosity as the surrounding
fluid in a linear shear flow by means of a boundary element method, and pointed
out that the theory considerably underestimates the migration velocity or erroneously
predicts the lateral motion, despite consistent predictions of the rising velocity and
the interfacial deformation. Recently, Takemura, Magnaudet & Dimitrakopoulos
(2009) experimentally measured the lateral migration velocity of slightly deformed
bubbles in a wall-bounded shear flow, and found a clear discrepancy between the
experimental and theoretical values of the deformation-induced transverse force.
Then, they computed the quasi-steady evolution of deformable bubbles moving in a
wall-bounded linear shear flow at zero Reynolds number using a spectral boundary
element method developed by Dimitrakopoulos (2007), and found that the measured
deformation-induced lift force agrees quantitatively well with the computational
prediction. Motivated by their conclusions, we revisited experimental data of the
bubble migration in a quiescent liquid obtained by Takemura et al. (2002), and
analysed the data on the conditions that the clearance between the bubble interface
and the wall is comparable to or shorter than the bubble radius, which was not
considered there. The results revealed that the discrepancy between the migration
velocities of the experiment and the theory increased as the bubble moved closer to
the wall, as detailed below.

In this paper, we focus on the bubble motion in a quiescent liquid to simplify the
subject. Let us consider the migration velocity VB3(= V B · e3) of a bubble rising near
a vertical plane wall at a distance d between the bubble centroid and the wall as
schematically illustrated in figure 1(a). The bubble has an equivalent radius a to that
of a sphere with the same volume. Introducing an interfacial deflection f (θ, φ) from
a sphere, we write the distance from the bubble centroid to the interface as a +f . The
experimental results used here were measured under the condition that the Reynolds
number Re = 2ρaVB1/µ (here VB1(= V B · e1), ρ and µ, respectively, denote the rising
velocity, the density and the dynamic viscosity of liquid) is unity or less (Takemura
et al. 2002). The pure lateral migration velocities induced by the deformation VB3

were calculated from the measured values substituting the velocities induced by the
inertia effects. Following a Stokes flow theory for the deformation-induced migration
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Figure 1. Schematic of a buoyant bubble moving near a vertical plane wall in a quiescent
liquid. The solid outline shows a deformed interface with a deflection f from a spherical
interface indicated by the dotted outline. (a) Coordinates system around the bubble. In the
analysis of Magnaudet et al. (2003), a/d is assumed to be sufficiently smaller than unity
(here, a is the bubble radius and d is the distance between the bubble centroid and the wall).
(b) Inter-scale coordinates between the bubble surface and the wall and scaling relations
suitable to lubrication theory. A clearance parameter is defined as ε = c/a.

(Magnaudet et al. 2003), we can characterize the system using two parameters, i.e.
a clearance parameter ε(= c/a) and a capillary number Ca = µVB1/γ (or a Bond
number Bo = ρa2g/γ as used in Magnaudet et al. 2003). Here γ and g, respectively,
denote the surface tension and the acceleration of gravity. Further, as long as Ca � 1,
we may use Ca as a perturbation parameter, and reduce the Ca-dependent system
to another, in which VB1, VB3/Ca and f/Ca are dependent only upon ε, under the
infinitesimal deformation assumption. Figure 2 shows the migration velocity VB3 away
from the wall normalized by CaVB1 as a function of κ(≡ (1 + ε)−1). (It should be
noticed that although κ as well as ε are measures of the distance between the wall
and the bubble, hereafter κ is also used to make some equations for the wide gap
case (κ � 1) simple.) The measured velocity is found to be much higher than the
analytical solution, especially for large κ . A possible inference to be drawn from this
result is that there exists an additional ingredient to generate repulsive force for a
narrow bubble–wall gap, which is not covered by the theory of Magnaudet et al.
(2003).

As the most crucial restriction involved in the mirror image technique, we can
make the assumption that the bubble–wall distance is much longer than the bubble
radius. However, with regard to an inertia effect on the lateral velocity of a rigid
sphere, Takemura (2004) experimentally demonstrated that the mirror image approach
has robust applicability in prediction beyond the wide-gap precondition. At this
moment, we cannot conclude whether the discrepancy in the deformation-induced
migration velocity comes from the erroneous prediction due to the miscalculation
or the contradictory conditions in the boundary element computation and the
experiment with the theoretical assumptions. To complement the experiment and
to gain further insight into the deformation-induced migration, we investigate the
migration behaviour with attention to shortness of a bubble–wall clearance c (= d−a).
As in Magnaudet et al. (2003), using two Stokes flow solutions for a spherical bubble
translating parallel and perpendicular to the wall, we apply the Lorentz reciprocal
theorem to evaluating the migration velocity. We carry out numerical simulations
using a boundary-fitted grid, which can accurately implement the boundary conditions
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Figure 2. Migration velocity VB3 versus κ(= (1 + ε)−1). The solid curve indicates the
analytical solution (Magnaudet et al. 2003) VB3/(CaVB1) = 3κ2(1 + 3κ/2)/{40(1 +3κ/4)} with
the assumption of the sufficiently long distance between the bubble centroid and the wall, i.e.
ε � 1. The dashed curves indicate the experimental results (Takemura et al. 2002), the circles
the results obtained by the numerical simulation and the dash-dotted curve the prediction
(2.24) by means of the lubrication approach (Hodges, Jensen & Rallison 2004). The inset
shows the ratio of the simulation result to the analytical solution.

and release the constraint of the sufficiently wide bubble–wall gap in the mirror image
technique. In addition, comparisons with a theoretical migration velocity for ε � 1
obtained from a lubrication study of a nearly spherical drop moving near a tilted plane
(Hodges et al. 2004), in which the secondary flow due to the change in the boundary
geometry caused by the bubble deformation is responsible for the wall-normal force,
are made to shed more light on the short clearance effect.

2. Numerical simulation
2.1. General formulation

To clarify the physical mechanism of the repulsive force, we numerically address the
bubble migration. In a similar manner to Magnaudet et al. (2003), instead of directly
solving the flow field with the deformed bubble, we employ the Lorentz reciprocal
theorem to determine the lateral migration force and velocity through coupling two
flow fields around a spherical bubble translating parallel and perpendicular to the
wall. In the subsequent developments, the basic equations and the involved variables
are non-dimensionalized using a, VB1 and µ. We assume that the bubble quasi-
steadily rises near an infinite flat plate in a stagnant incompressible liquid, and both
the Reynolds and capillary numbers are sufficiently smaller than unity. Hence, the
system is described by the steady Stokes equation for solenoidal velocity vectors, i.e.

∇ · U = ∇ · u = 0, −∞ < x1 < ∞, −∞ < x2 < ∞, −1 − ε � x3 < ∞, (2.1)

∇ · Σ = ∇ · σ = 0, −∞ < x1 < ∞, −∞ < x2 < ∞, −1 − ε � x3 < ∞, (2.2)

where (U, Σ) and (u, σ ) are the velocity and stress fields for the bubble translating,
respectively, parallel and perpendicular at a speed of unity to the wall. The Ca
dependence of the interfacial deflection is given by f (θ, φ; Ca) = Caf (Ca)(θ, φ). The
bubble deformation obeys the Laplace law for the infinitesimal deflection |f | � 1 with
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Ca � 1,(
∇2

s + 2
)
f (Ca) = −n · Σ · n + 3x1〈x1n · Σ · n〉SB

, at

√
x2

1 + x2
2 + x2

3 = 1, (2.3)

where n represents the normal unit vector pointing outwards from the liquid, ∇s(= ∇−
n(n · ∇)) is the nabla operator along the tangential directions on the bubble surface,
〈. . .〉SB

is the area average taken over the bubble surface and x1 is the coordinate in
the upward direction from the origin at the bubble centroid. Kinematic and free-slip
conditions are imposed on the bubble surface, i.e.

n · U = 0,

(n · Σ) × n = 0,

n · u = 0,

(n · σ ) × n = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ at

√
x2

1 + x2
2 + x2

3 = 1, (2.4)

where we take the reference frames viewed from the bubble. On the plane wall, we
impose the no-slip condition

U = −e1,

u = e3,

}
at x3 = −1 − ε. (2.5)

Sufficiently far from the bubble, the velocity vectors approach the uniform velocities

U → −e1,

u → e3,

}
as

√
x2

1 + x2
2 + x2

3 → ∞. (2.6)

Thanks to the reciprocal theorem (Leal 1980; Magnaudet et al. 2003, equation
(35)), the deformation-induced lateral force FM =CaF

(Ca)
M to cancel the migration

velocity and to maintain the wall-parallel motion is expressed as

F
(Ca)
M =

∮
SB

d2x L
(
f (Ca)

)
, (2.7)

where SB denotes the bubble surface, and the operator L is given by

L = n · σ · n
(

∂U
∂n

· n − U · ∇s

)
− u ·

(
∂Σ

∂n
· n − Σ · ∇s

)
− {n · Σ · n − 3x1〈x1n · Σ · n〉SB

} u · ∇s . (2.8)

The migration velocity VB3 = CaV
(Ca)
B3 is expressed as

V
(Ca)
B3

VB1

=
F

(Ca)
M

FDC

, (2.9)

where

FDC =

∮
SB

d2x e3 · σ · n (2.10)

denotes the drag force acting on the bubble translating perpendicular to the plane
wall.

2.2. Simulation method

The basic equations are numerically solved by the second-order finite-difference
method discretized on a bipolar coordinates (ξ, η) grid, which is boundary-fitted
on both the bubble surface and the plane wall (see figure 9a in Appendix A).
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We take care of the mass and momentum conservations in a discretized form. For
technical detail on the discretization, see Appendix A. The number of grid points is
Nξ × Nη = 200 × 200, and the grid is non-uniform and refined near the wall and the
bubble surface. The computational procedure is based on a simplified-marker-and-cell
method (Amsden & Harlow 1970) with a first-order Eulerian implicit time marching
scheme. Such an unsteady scheme enables us to check whether the computation
converges to the fully developed state through temporal changes in the budgets of
the momentum and kinetic-energy transports. To avoid a problem associated with
singularities in the discretization near the axis, we follow a method proposed by
Fukagata & Kasagi (2002).

For each run, we confirm that drag forces, numerically evaluated on the bubble
surface, for both the perpendicular and parallel motions are in good agreement with
the respective kinetic-energy dissipation rates, numerically integrated over the entire
computational domain, normalized by the translational velocities with an error of less
than 0.040 %. Such an agreement between the surface and bulk quantities indicates
that the computation is well converged and reaches to the steady state in view of the
momentum and kinetic-energy budgets. Further, the drag force for the perpendicular
motion shows quantitative agreement with the infinite series solution of Bart (1968)
with an error of less than 0.043 %. The drag force for the parallel motion approaches
the wide-gap solution of Magnaudet et al. (2003) with increasing ε. To make sure
of numerical stability and accuracy, we set the clearance parameter in a range of
10−3 � ε � 9. We performed the convergence tests by varying the size Rmax of the
computational domain, the number Nξ of nodes in the gap between the bubble and
the wall, and the number Nη of nodes describing the bubble surface. We confirmed
that the relative errors in the migration velocity VB3 and the drag forces for the
perpendicular and parallel bubble motions, to those obtained on the base meshes
Nξ × Nη = 200 × 200 for various ε, decrease when increasing the size Rmax and the
resolutions Nξ and Nη. From the convergence behaviour, we deduce the migration
velocities VB3 with errors of much less than 1 %, using the present base meshes, which
are accurate enough for the subsequent discussion.

2.3. Migration velocity

As shown in the inset of figure 2, the ratio of the simulation to the analytical migration
velocity becomes close to unity as κ(= (1 + ε)−1) approaches zero, indicating the
simulation result is consistent with the analytical solution (Magnaudet et al. 2003) for
small κ(< ∼0.3). Such a consistency between the different approaches may refute the
erroneous prediction of the migration velocity in Magnaudet et al. (2003), of which
the possibility was pointed out by Wang & Dimitrakopoulos (2006). By contrast,
the simulated migration velocity for the bubble closer to the wall with the clearance
shorter than the bubble radius (i.e. for κ > ∼0.5 presumably beyond the theoretical
precondition κ � 1) is considerably higher than the analytical solution. Although the
simulation result reveals a lower velocity than the experimental one, the tendency to
a higher velocity than the theoretical one for the narrow gap is qualitatively similar
to that in the experiment. Thus, the present simulation also indicates the presence of
the additional narrow-gap repulsive force.

For an undeformed spherical bubble at small but non-zero Reynolds numbers
0 <Re � 1, using the solutions to (2.1)–(2.6), we can also evaluate the inertia effect
on the migration velocity VB3 = Re V

(Re)
B3 from

F
(Re)
M =

1

2

∫
V

d3x (e3 − u) · {(U · ∇)U}, (2.11)
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Figure 3. Inertia-driven migration velocity VB3 versus κ(= (1 + ε)−1) for spherical bubble
at 0 < Re � 1. The solid curve indicates the analytical solution (Magnaudet et al. 2003)
VB3/(ReVB1) = ((1 + κ/8 − 0.516κ2)/32)(1 − (3/4)κ − (9/64)κ4) under the assumption of
(O(Re) < κ � 1) as in figure 2. The circles indicate the results obtained by the numerical
simulation.

V
(Re)
B3

VB1

=
F

(Re)
M

FDC

, (2.12)

where V stands for the entire volume of liquid around the bubble. The force expression
(2.11) is theoretically justified for the case that the wall is placed within a Stokes
expansion region, i.e. O(Re) <κ (Vasseur & Cox 1976). Figure 3 shows the inertia-
driven migration velocity as a function of κ . The simulated profile is globally consistent
with the analytical solution (Magnaudet et al. 2003) even for the narrow gap κ ∼ 1,
as opposed to the profile of the deformation-induced migration velocity in figure 2.
It should be noticed that (2.7) of the deformation-induced lateral force is written in a
surface integral form, while the inertia-driven force (2.11) in a volume integral form.
The overall agreement in the inertia-driven migration velocity indicates that capturing
the bulk velocity distributions is important for predicting the migration velocity and
can be robustly attained by the mirror image technique over the wide range of κ . The
wide range of agreement with the theories (Vasseur & Cox 1976; Magnaudet et al.
2003) was also experimentally demonstrated for the sedimenting rigid particle in a
range of 0.1 <Re < 1 by Takemura (2004) as long as the wall is placed in the Stokes
expansion region. Contrastingly, as shown in figure 2, the larger discrepancy between
the deformation-induced migration velocities of the simulation and the theory with
increasing κ indicates that the migration velocity is sensitive to the local effect leading
to the additional narrow-gap repulsive force, which may not be covered by the mirror
image technique.

2.4. Interfacial deformation

To demonstrate the narrow-gap effect, we investigate the bubble deformation. We
here examine the scaled interfacial deflection f̂ (Ca)(θ) = f (θ, φ)/(Ca cosφ). In the
experiment, we estimated f (θ, φ) taking a circumference of the bubble on the plane
x2 = 0. Figure 4 shows the angular profile of the deflection −f̂ (Ca) for various
κ(= (1 + ε)−1). As shown in figure 4(a) for the relatively wide gap ε = 0.67, the
analytical solution for κ � 1 (Magnaudet et al. 2003) is consistent with the measured
and simulated deflections. Note that the agreement between the theoretical and
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(Magnaudet et al. 2003) −f̂ (Ca) = (3/4)κ2 {1 + (3/8)κ (1 + (3/8)κ +(73/64) κ2)} sin θ cos θ with
the assumption of the sufficiently long distance between the bubble centroid and the wall, i.e.
κ(= (1 + ε)−1) � 1. The circles indicate the experimental results (Takemura et al. 2002), the
dashed curves the results obtained by the numerical simulation and the dash-dotted curves the

prediction (B 11) (−f̂ (Ca) = (3/5θ) log(1 + θ2/2ε)) by the lubrication approach (Hodges et al.
2004). The results at ε =0.67, ε = 0.25 and ε = 0.10 are shown in (a), (b) and (c), respectively,
and the corresponding capillary numbers in the experiment are Ca =0.080, Ca =0.068 and
Ca = 0.056, respectively.

simulated deflections is confirmed to be better in the wider separation. For the
narrower gap (ε =0.10, 0.25), by contrast, the analytical solution of the deflection
magnitude is smaller than the measured one, especially in the wall neighbourhood
(θ ∼ 0), which may be related to the considerable underestimation of the migration
velocity as shown in figure 2. In contrast, the present simulation quantitatively captures
the local near-wall profile of the measured deflection as well as the global magnitude.

To quantify the local effect of such a large discrepancy in f̂ (Ca) on the migration
velocity, we describe the deflection in an expansion form,

f̂ (Ca)(θ) =

∞∑
n=2

f̂ (Ca)
n P 1

n (cos θ), (2.13)
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where P 1
n represents the associated Legendre polynomial. Figure 5 shows the modal

deflections f̂ (Ca)
n for 2 � n � 5 as a function of κ . The simulation results are consistent

with the measured deflections for all the shown modes. In predicting the bubble
migration, the wide-gap theory (Magnaudet et al. 2003) assumes that the mirror
image primarily induces the deformation of the mode n= 2. The leading order of
the n= 2 deflection is f̂

(Ca)
2 = κ2/4 in the limit of κ → 0. Considering the higher-order

effect with respect to κ , Magnaudet et al. (2003) derived f̂ (Ca)
n = κ2/4 {1 + (3/8)κ

(1 + (3/8)κ+(73/64)κ2)}. For κ < ∼0.7, such a higher-order κ correction is responsible
for the enhancement of the n= 2 deflection from the leading-order one, as seen in
the better agreement with the measured and simulated deflections. However, the
correction is not sufficient for the narrower gap κ > ∼0.7, and thus the theoretical
underestimation of the n= 2 deflection becomes more serious with κ . Further, the
theory does not cover the considerable increase in the higher-order n � 3 deflections
with κ , as demonstrated by both the measurement and the simulation.

The modal deflection f̂ (Ca)
n is linked to the migration velocity and force as

decomposed into

V
(Ca)
B3 =

∞∑
n=2

V
(Ca)
B3,n , F

(Ca)
M =

∞∑
n=2

F
(Ca)
M,n , (2.14)

which are

V
(Ca)
B3,n

VB1

=
F

(Ca)
M,n

FDC

, (2.15)

F
(Ca)
M,n =

∮
SB

d2x L
(
f̂ (Ca)

n P 1
n (cos θ) cos φ

)
. (2.16)
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(Magnaudet et al. 2003) V
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B3,2/VB1 = 3κ2(1 + 3κ/2)/{40(1 +3κ/4)}. The symbols indicate the

results obtained by the numerical simulation. The inset shows the same plot in a log–log scale.
(b) The simulation results of the modal contribution normalized by the total velocity.

Figure 6(a) shows the contribution of the modal deflection to the migration velocity
for the modes n= 2 and n= 3. For small κ , the simulation result is consistent
with the analytical solution (Magnaudet et al. 2003), which considers only the n= 2
deformation to cause the bubble migration. The inset shows that for small κ , the
contribution of the mode n= 2 is proportional to κ2, while that of the mode n= 3
to κ5, whose exponent is not trivially proved, but may be predictable, extending the
regular perturbation to the higher order. The difference in the exponent ensures that
the relative contribution of the mode n=3 to n= 2 becomes more significant with κ . It
should be noticed that although we confirmed that the migration force contribution
F

(Ca)
M,2 of the mode n= 2 increases as κ → 1 (i.e. ε → 0), the velocity contribution

V
(Ca)
B3,2 reduces as shown in figure 6(a). It is because the slope of the n= 2 migration

force, −d log F
(Ca)
M,2 /d log ε, in a logarithmic plot is more gentle than that of the drag
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force, −d log FDC/d log ε → 1, in the denominator of (2.15) as ε → 0. Figure 6(b)
shows the modal contribution V

(Ca)
B3,n compared with the migration velocity V

(Ca)
B3 . The

contribution of the mode n= 2 monotonically decreases with κ . The contribution
of the mode n= 3 increases with κ in the range of κ < ∼0.8, while it decreases for
greater κ . This is because the higher modal contributions for n � 4 can no longer
be disregarded. Moreover, the fact that all the modal contributions shown decay as
κ → 1 indicates that the further higher-order contributions become considerable, and
the regular perturbation approach with respect to κ is no longer effective.

2.5. Comparison with small deformation theory in the lubrication limit

Figures 4, 5 and 6 imply that for small ε, the bubble deformation is preferentially
enhanced within the narrow bubble–wall gap, and then its squeezing effect promotes
the bubble migration. To shed more light on the role of the hydrodynamics in the
gap, comparisons with a small deformation theory in the lubrication limit will be
made. It should be noticed that Hodges et al. (2004) have performed a lubrication
study for a nearly spherical drop near a tilted plane in so-called ‘slipping’ regime,
and derived the deformation-induced normal force. One can also access a relevant
physical picture in theoretical studies on the lift force on an elastic body induced by its
deformation (Sekimoto & Leibler 1993; Skotheim & Mahadevan 2004, 2005; Urzay,
Smith & Glover 2007). Following the spirit of the lubrication theory, we evaluate the
migration velocity in the limit of ε → 0.

The basic equations for the lubrication analysis and the solutions are shown in
Appendix B. For comparison with the simulation results, the preconditions and the
perturbed quantities are detailed here. We prescribe the wall-parallel velocity VB1,
and employ the standard lubrication assumption, i.e. ε � 1. We also assume a small
capillary number Ca � 1. As implied in (2.21), the deflection is O(Caε−1/2a), which
has to be sufficiently smaller than the gap εa if the tilt angle of the near-wall interface
from the plane wall is assumed to be small. Here we adopt an additional constraint
δ ≡ ε−3/2Ca � 1. For inner coordinates (R, Z, φ) (here ε1/2R = r and ε−1Z = z as
illustrated in figure 1b; see e.g. Goldman, Cox & Brenner 1967; O’Neill & Stewartson
1967), a parabolic profile Z = H (R) ≡ 1 + R2/2 represents the interface within the
inner region r ∼ ε1/2, if the deformation is absent. Using ε, we write the velocity
vector, the pressure and the deflection f (Ca) of the interface in an expansion form
with respect to δ:

ur (r, φ, z) = Û (0)
r (R, Z) cosφ + δÛ (f )

r (R, Z) + εÛ (1)
r (R, Z) cos φ

+ δÛ (f,2)
r (R, Z) cos 2φ + O(δ2) + O(εδ) + · · · , (2.17)

uφ(r, φ, z) = Û
(0)
φ (R, Z) sinφ + εÛ

(1)
φ (R, Z) sinφ

+ δÛ
(f,2)
φ (R, Z) sin 2φ + O(δ2) + O(εδ) + · · · , (2.18)

uz(r, φ, z) = ε1/2
(
Û (0)

z (R, Z) cosφ + δÛ (f )
z (R, Z) + εÛ (1)

z (R, Z) cosφ

+ δÛ (f,2)
z (R, Z) cos 2φ + O(δ2) + O(εδ) + · · ·

)
, (2.19)

p(r, φ, z) = ε−3/2
(
P̂ (0)(R) cos φ + δP̂ (f )(R) + εP̂ (1)(R, Z) cosφ

+ δP̂ (f,2)(R, Z) cos 2φ + O(δ2) + O(εδ) + · · ·
)
, (2.20)

f (Ca)(r, φ) = ε−1/2
(
F̂ (R) cos φ + O(δ) + O(ε)

)
, (2.21)

whose scaling relations are suitable for all equations in Appendix B. It should be noted
that the terms with the superscript (0), (1) or (f, 2) in (2.17)–(2.20) are proportional
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to cosφ, sinφ, cos 2φ or sin 2φ, and thus provide no wall-normal force. Here we make
it clear that the physical domain of validity of the condition δ � 1 when the rising
velocity VB1, which is needed to evaluate Ca(= µVB1/γ ), is unknown. Following the
analysis by O’Neill & Stewartson (1967), we write the drag force FD acting on the
spherical bubble translating parallel to the wall in a form FD = 6πµaVB1(A log ε +B),
where A and B are independent of ε. Considering the free-slip boundary condition
on the bubble surface, we can analytically find A= − 1/5. From our numerical data,
we approximately estimate B = 0.6. Hence, from the force balance FD =4πρa3g/3,
for ε � 1, we evaluate the rising velocity

VB1 =
1

(− log ε + 3)

10ρa2g

9µ
, (2.22)

and obtain the following relation for the bubble radius a to satisfy the condition
δ � 1:

a �

√
9γ

10ρg
ε3/4(− log ε + 3)1/2. (2.23)

To assure us of the appearance of the lubrication effect, figure 7 shows the profiles
of the pressure P̂ (0)(= 3R/(5H 2)) and deflection −F̂ (= 3 log H/(5R)) in the lubrication
limit (see (B 10) and (B 11), respectively), which are compared with the simulation
results of the scaled interfacial pressure ε3/2P/ cos φ and the scaled deflection ε1/2f̂ (Ca)

near the wall as a function of ε−1/2θ . For sufficiently small ε, the simulation data of the
scaled pressure collapse onto the curve (B 10) as shown in figure 7(a). Therefore, the
scaled deflection profile approaches the lubrication solution (B 11) when decreasing
the bubble–wall gap, as shown in figure 7(b). As plotted as the dashed-dotted curve in
figure 4, the deflection based on (2.21) and (B 11) is consistent with the measured and
simulated deflections in the wall neighbour (θ ∼ 0). Hence, the discrepancy between
the deflections of the narrow-gap experiment and the wide-gap theory (Magnaudet
et al. 2003) is attributable to the lubrication effect.

From Bart (1968), the drag force acting on the bubble translating perpendicular
to the plane wall is FDC → 3πµ/(2ε) as ε → 0. Substituting this relation and (B 20)
(i.e. FM in the lubrication limit) into (2.9), we obtain the asymptotic solution of the
migration velocity

VB3

VB1

=
FM

FDC

→ Ca

25
ε−1 as ε → 0. (2.24)

To make comparisons with the asymptotic solutions, figures 2 and 8 show the
scaled migration velocity as functions of the inverse distance κ(= (1 + ε)−1) and the
clearance parameter ε, respectively. The inset of figure 8 shows the scaled force (B 20).
The simulation results are consistent with two asymptotic behaviours based on the
lubrication theory for ε � 1 as well as the mirror image technique for ε � 1 (i.e.
κ � 1). As seen from figure 8, the theories provide the different exponents of the
migration velocity scaling with respect to ε, namely, VB3/VB1 ∝ Ca ε−2 for ε � 1 and
VB3/VB1 ∝ Ca ε−1 for ε � 1.

The puzzling finding in Takemura et al. (2009) that the theory of Magnaudet
et al. (2003) accurately predicts the deformation but fails to predict quantitatively the
deformation-induced migration velocity is explained by the fact that the ratio of the
simulation result of VB3 to the theoretical prediction is more sensitively dependent
upon ε than that of f̂

(Ca)
2 when the lubrication effect becomes relevant. For instance,

for ε = 0.4, ε = 0.2 and ε = 0.1, the simulation-to-theory ratios of f̂
(Ca)
2 are, respectively,
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Figure 7. Profiles of the pressure (a) and the deflection (b) in the inner expansion scalings
of the lubrication theory. The solid curves indicate the predictions (B 10) and (B 11) by the
lubrication approach (Hodges et al. 2004). The symbols indicate the results obtained by the
numerical simulation. For the plot, the simulation data of the interfacial pressure P and

deflection f̂ (Ca) for the bubble translating parallel to the wall are scaled as P̂ (0) = ε−3/2P/ cos φ

and F̂ = ε−1/2f̂ (Ca), and the angular coordinate as R = ε−1/2θ .

1.004, 1.1 and 1.3 (figure 5), while those of VB3 are, respectively, 2.5, 4.3 and 7.3
(figure 2). The lubrication effect is likely to compensate for the large discrepancy
between the migration velocities of the experiment and the wide-gap theory revealed
in Takemura et al. (2009). However, although the quantitative agreement between
the interfacial deflections of the experiment and the simulation is shown in figures
4 and 5, the migration velocity in the experiment is still considerably higher than
the simulated one. The cause is not clear at the moment, and further joint research
combining theory, numerics and experiment is needed to resolve this discrepancy.

3. Conclusion
We numerically and theoretically investigated deformation-induced lateral

migration of a bubble slowly rising near a vertical plane wall in a stagnant liquid.
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Figure 8. The lateral migration velocity versus the clearance parameter ε. The circles indicate
the results obtained by the numerical simulation. The solid and dash-dotted curves correspond
to the analytical solution VB3 = 3CaVB1κ

2 (1 + 3κ/2)/{40(1 +3κ/4)} (Magnaudet et al. 2003)
and VB3 = CaVB1ε

−1/25, respectively, derived by means of the lubrication approach (Hodges
et al. 2004). The dashed curves indicate the experimental results (Takemura et al. 2002). The
inset shows the lateral force (B 20).

We focused on a situation with a short clearance c between the bubble interface and
the wall. We demonstrated that the wide-gap theory (Magnaudet et al. 2003), which
considers the n= 2 deformation mode, describes the deformation-induced lift force as
long as the bubble–wall gap is sufficiently wide (a/(a + c) � 1, here a is the bubble
radius). For the narrow-gap case with the clearance parameter ε(= c/a) smaller than
unity, we found that the higher-order n � 3 deformation modes crucially enhance the
migration velocity, and the lubrication effect (Hodges et al. 2004) appears to induce
the migration velocity, which scales asymptotically like VB3 → Ca ε−1VB1/25 as ε → 0.
This contrasts with the case of the inertia-driven migration, to which the wide-gap
theory demonstrated a robust applicability in prediction over a wide range of ε.

The present simulation consistently served as bridge between the wide- and
narrow-gap theories (see figure 8) as long as the bubble deformation is assumed
to be infinitesimal. However, in spite of the qualitative success of the simulation
in revealing the narrow-gap repulsive force, the deformation-induced migration
velocity in the experiment is considerably higher by a factor of about 3 than the
simulated one, as shown in figure 2. The experiment may inevitably involve unknown
factors such as unsteadiness, imperfection from the infinite plate-fluid system and
measurement uncertainty, which cannot be captured by the simulation. Nevertheless,
we have not expected such a large discrepancy because (i) the quantitative agreement
between the interfacial deflections of the experiment and the simulation has been
confirmed in figures 4 and 5, (ii) the inertia-driven migration velocity of a rigid
sphere is consistent with the available theories (Vasseur & Cox 1976; Magnaudet
et al. 2003) has been obtained by Takemura (2004) using the same experimental
set-up, and (iii) considerable uncertainty seems not to be introduced into such a



On the lateral migration of a slightly deformed bubble 223

simple system, as illustrated in figure 1. Further joint research combining theory,
numerics and experiment is needed to resolve this problem. As a possible factor
causing the inconsistency, we note the difference between the bubble deformation
levels of the experiment and the present analysis. As stated in § 2.5, the infinitesimal
deformation assumption in the lubrication limit is justified only for the case
that δ(= ε−3/2Ca) � 1. Beyond this limitation, unexplored hydrodynamic ingredients
possibly become important on the bubble migration. For the experimental data shown
in figures 2 and 8, the maximum value of δ is 0.74, which is less than but comparable to
unity. Therefore, the bubble deformation is finite rather than infinitesimal, and is likely
to induce the higher-order force, which is possibly comparable to or stronger than
the leading migration force evaluated with the infinitesimal deformation theories.
From the theoretical viewpoint, a tiny bubble experiment, which results in a tiny
capillary number and thus a tiny deformation, is favourable for comparative study.
However, such an experiment has often resulted in an undetectable low migration
velocity and made accurate measurement difficult. To overcome such a dilemma,
the highly accurate boundary element computations (e.g. Wang & Dimitrakopoulos
2006; Dimitrakopoulos 2007) for various deformation levels would be helpful to
complement the infinitesimal deformation theories.

We thank Shu Takagi for fruitful discussion.

Appendix A. Finite-difference descriptions of the basic equation set in bipolar
coordinates

We describe the basic equation set in bipolar coordinates (see e.g. O’Neill 1964;
Happel & Brenner 1973, Appendix A-19) as illustrated in figure 9(a). The coordinates
(r, z) in figure 1(b) are

r =
k sin η

D , z =
k sinh ξ

D , (A 1)

where D = cosh ξ − cos η and k =
√

ε(ε + 2). The bubble surface is located at
ξ = α ≡ log(1 + ε + k) as shown in figure 9(a). The gradient of a scalar function
q is written as

∇q =
eξ

hξ

∂q

∂ξ
+

eη

hη

∂q

∂η
+

eφ

hφ

∂q

∂φ
, (A 2)

where e represents a unit vector, and its subscript the corresponding component; h

denotes the scale factor, defined by, e.g. hξ = {(∂x1/∂ξ )
2 +(∂x2/∂ξ )

2 +(∂x3/∂ξ )
2}1/2 (see

e.g. Batchelor 1967, Appendix B). Each component is explicitly given by

hξ = hη =
k

D , hφ = r. (A 3)

The vector and pressure field (U, P ) for the bubble translating parallel to the wall is
written in the form (e.g. Sugiyama & Sbragaglia 2008)

U = {(eξ Ûξ + eηÛη) cosφ + eφÛφ sinφ − e1}, P = P̂ cosφ, (A 4)

for which the Fourier expansion reduces the three-dimensional problem to a two-
dimensional one. The vector and pressure field (u, p) for the bubble translating
perpendicular to the wall is

u = eξ ûξ + eηûη + e3, p = p̂. (A 5)
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Figure 9. Computational grid. (a) The bipolar coordinates: ξ = 0 and ξ =α represent the
plane wall and the bubble surface, respectively. (b) Definition points of the velocity components
and the pressures on the staggered grid in a computational space.

It should be noticed that, as opposed to the reference frames in § 2.1, we take those
for (Ûξ , Ûη, Ûφ) and (ûξ , ûη) viewed from the plane wall for convenience of the

simulations. Consequently, Ûξ = Ûη = Ûφ = ûξ = ûη = 0 on the plane wall and on the
boundary sufficiently far from the bubble.

We follow a conventional staggered grid arrangement (Harlow & Welch 1965),
where the velocity component is located on the corresponding cell interface, and the
pressure at the cell centre, as shown in figure 9(b). The basic equations are discretized
by the second-order finite-difference scheme. To numerically guarantee the mass and
momentum conservations, and to accurately conduct the numerical integration in
computing the drag and migration forces, we use the exact values of the grid width,
the cell interfacial area and the control volume in the bipolar coordinates. To this
end, for the integral of the scale factors

gξ (ξ, η) =

∫ ξ

α

dξ̄ hξ (ξ̄ , η), gξφ(ξ, η) =

∫ ξ

α

dξ̄ hξ (ξ̄ , η)hφ(ξ̄ , η), (A 6)

gη(ξ, η) =

∫ η

π

dη̄ hη(ξ, η̄), gηφ(ξ, η) =

∫ η

π

dη̄ hη(ξ, η̄)hφ(ξ, η̄), (A 7)

gξη(ξ, η) =

∫ ξ

α

dξ̄

∫ η

π

dη̄ hξ (ξ̄ , η̄)hη(ξ̄ , η̄), g(ξ, η) =

∫ ξ

α

dξ̄

∫ η

π

dη̄ h(ξ̄ , η̄), (A 8)

we use the exact expressions

gξ =
2k

sin η

(
tan−1

(
D + C

S

)
− tan−1

(
Dα + Cα

Sα

))
, (A 9)

gη = − 2k

sinh ξ
tan−1

(
D + C

S

)
, (A 10)

gξη = k2

{(
1

sinh2 ξ
− 1

sin2 η

)
tan−1

(
D + C

S

)
−

(
1

sinh2 α
− 1

sin2 η

)
tan−1

(
Dα + Cα

Sα

)
−

(
C + 2

2S − Cα + 2

2Sα

)}
, (A 11)
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gηφ = k2

(
− 1

D +
1

cosh ξ + 1

)
, (A 12)

gξφ = k2

{
2 cos η

sin2 η

(
tan−1

(
D + C

S

)
− tan−1

(
Dα + Cα

Sα

))
+

sinh ξ

D sin η
− sinhα

Dα sin η

}
,

(A 13)

g = − k3

sin3 η

{(
tan−1

(
D + C

S

)
− tan−1

(
Dα + Cα

Sα

))
cos η +

S
2D − Sα

2Dα

}
− k3

12

(
tanh3 ξ

2
− tanh3 α

2

)
+

k3

4

(
tanh

ξ

2
− tanh

α

2

)
, (A 14)

where

h = hξhηhφ, C = cosh ξ cos η − 1, S = sinh ξ sin η,

Dα = cosh α − cos η, Cα = coshα cos η − 1, Sα = sinhα sin η.

}
(A 15)

We introduce the finite-difference operators δi and δj , of which the indices i and j

correspond to discretized coordinates along the respective directions ξ and η, such as

δi(q)|i,j = qi+1/2,j − qi−1/2,j ,

δj (q)|i,j = qi,j+1/2 − qi,j−1/2,

δiδj (q)|i,j = qi+1/2,j+1/2 − qi+1/2,j−1/2 − qi−1/2,j+1/2 + qi−1/2,j−1/2.

⎫⎪⎬⎪⎭ (A 16)

Using these operators, we write the divergence of the velocity vector U in (2.1) as

∇̂ · U
∣∣∣
i,j

(
≡ ∇ · U

cos φ

)
=

(δi(δj (gηφ)Ûξ )|i,j + δj (δi(gξφ)Ûη)|i,j + Ûφδiδj (gξη)|i,j )
δiδj (g)|i,j

, (A 17)

and the components of the Stokes equation (2.2) for the bubble translating parallel
to the plane wall as

0 =
δi(−P̂ + ∇̂ · U)|i+1/2,j

δi(gξ )|i+1/2,j

+
−δj (rΩ̂φ)|i+1/2,j + Ω̂ηδj (gη)|i+1/2,j

δj (gηφ)|i+1/2,j

,

0 =
δj (−P̂ + ∇̂ · U)|i,j+1/2

δj (gη)|i,j+1/2

+
δi(rΩ̂φ)|i,j+1/2 − Ω̂ξ δi(gξ )|i,j+1/2

δi(gξφ)|i,j+1/2

,

0 =
(P̂ − ∇̂ · U)|i,j

r |i,j
+

−δi(δj (gη)Ω̂η)|i,j + δj (δi(gξ )Ω̂ξ )|i,j
δiδj (gξη)|i,j

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 18)

where Ω̂ denotes the vorticity, of which each component is

Ω̂ξ |i,j+1/2 =
δj (rÛφ)|i,j+1/2 + Ûηδj (gη)|i,j+1/2

δj (gηφ)|i,j+1/2

,

Ω̂η|i+1/2,j =
−δi(rÛφ)|i+1/2,j − Ûξ δi(gξ )|i+1/2,j

δi(gξφ)|i+1/2,j

,

Ω̂φ |i+1/2,j+1/2 =
δi(δj (gη)Ûη)|i+1/2,j+1/2 − δj (δi(gξ )Ûξ )|i+1/2,j+1/2

δiδj (gξη)|i+1/2,j+1/2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 19)

Replacing Ûξ , Ûη and P̂ , respectively, by ûξ , ûη and p with Ûφ = Ω̂ξ = Ω̂η =0, we
readily obtain the governing equation for the field (ûξ , ûη, p̂). We write the kinematic
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and free-slip conditions (2.4) as

Ûξ |Nα+1/2,j = ̂er · eξ |Nα+1/2,j , ûξ |Nα+1/2,j = −ez · eξ |Nα+1/2,j , (A 20)

Σ̂ξη|Nα+1/2,j+1/2 = Σ̂ξφ |Nα+1/2,j = σ̂ξη|Nα+1/2,j+1/2 = 0, (A 21)

where the index Nα + 1/2 denotes the node at the bubble surface ξ = α,

̂er · eξ =
δj

(
g

(ξ )
ξη

)
δj (gηφ)

, ez · eξ = − δj (r
2)

2δj (gηφ)
, (A 22)

g
(ξ )
ξη =

∫ η

π

dη̄

(
−k2S sin η̄

D3

)
= k2

{
1

sinh2 ξ
tan−1

(
D + C

S

)
+

C sin η

2D2 sinh ξ

}
, (A 23)

Σ̂ξη =
1

δiδj (gξη)

{
δi(gξ )

j
δj (Ûξ ) − δiδj (gξ )Ûξ

j

+ δj (gη)
i
δi(Ûη) − δiδj (gη)Ûη

i
}

, (A 24)

Σ̂ξφ =
1

δi(gξφ)

{
riδi(Ûφ) − δi(r)Ûφ

i

− δi(gξ )Ûξ

}
, (A 25)

σ̂ξη =
1

δiδj (gξη)

{
δi(gξ )

j
δj (ûξ ) − δiδj (gξ )ûξ

j
+ δj (gη)

i
δi(ûη) − δiδj (gη)ûη

i
}

, (A 26)

and the overline stands for the interpolation such as

qi |i,j =
qi+1/2,j + qi−1/2,j

2
, qj |i,j =

qi,j+1/2 + qi,j−1/2

2
. (A 27)

We write the area integral on the bubble surface in a summation form,∮
SB

dx2 q ≡
∫ 2π

0

dφ

∫ π

0

dη hηhφ q|ξ=α =

Nj∑
j=1

(
δj (gηφ)

∫ 2π

0

dφ q

)
Nα+1/2,j

, (A 28)

where Nj is the number of grid points in the η direction. The drag force FDC in (2.10)
is given by

FDC = 2π

Nj∑
j=1

(
δj (gηφ)ez · eξ σ̂ξξ

i
)

Nα+1/2,j
, (A 29)

where

σ̂ξξ = −p̂ +
2δj (gηφ)

i
δi(ûξ )

δiδj (g)
+

2rj δiδj (gξ )ûη

j

δiδj (g)
. (A 30)

For the deflection f̂ = f (Ca)/(a cosφ), the Laplace law (2.3) is expressed as

a
(f )
n,j f̂ |

j+1 + a
(f )
s,j f̂ |

j−1 − a
(f )
p,j f̂ | j = S(f )|

j
, (A 31)

where

a
(f )
n,j =

rNα+1/2,j+1/2

δj (gη)
i |Nα+1/2,j+1/2δj (gηφ)|Nα+1/2,j

,

a
(f )
s,j =

rNα+1/2,j−1/2

δj (gη)
i |Nα+1/2,j−1/2δj (gηφ)|Nα+1/2,j

,

a
(f )
p,j =

a
(f )
n,j ( ̂er · eξ )Nα+1/2,j+1 + a

(f )
s,j ( ̂er · eξ )Nα+1/2,j−1

( ̂er · eξ )Nα+1/2,j

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (A 32)
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S(f ) = −Σ̂ξξ

i

+
̂er · eξ

∑Nj

j=1(δj (gηφ) ̂er · eξ Σ̂ξξ

i

)j∑Nj

j=1(δj (gηφ) ̂er · eξ )
2
j

, (A 33)

Σ̂ξξ = −P̂ +
2δj (gηφ)

i
δi(Ûξ )

δiδj (g)
+

2rj δiδj (gξ )Ûη

j

δiδj (g)
. (A 34)

The deformation-induced lateral force F
(Ca)
M in (2.7) is given by

F
(Ca)
M = π

∑
j

[
δ j (gηφ)σ̂ξξ

i
δi(Ûξ − ̂er · eξ )f̂

δi(gξ )
+

rδiδj (gξ )σ̂ξξ

i
j

(Ûη − ̂er · eη)
i

f̂
j

δi(gξ )
j

+ δj (gηφ)σ̂ξξ

i

(
(Ûφ + 1)

r

)i

f̂ − rσ̂ξξ

i
j

(Ûη − ̂er · eη)
i

δj (f̂ )

− δj (gηφ)
j
(ûη + ez · eη)

i
δi(Σ̂ξη)f̂

j

δi(gξ )
+

rδiδj (gξ )(ûη + ez · eη)
i

δi(gξ )
j

(
Σ̂ξξ

i
j

− Σ̂ηη

i
j)

f̂
j

+ r(ûη + ez · eη)
i
Σ̂ηη

i
j

δj (f̂ ) − (ûη + ez · eη)
i

r
(δj (gηφ)Σ̂ηφ)

i

f̂
j

+ r(ûη + ez · eη)
i
S(f )

j
δj (f̂ )

]
Nα+1/2

, (A 35)

where

̂er · eη =
δi(g

(η)
ξη )

δi(gξφ)
, ez · eη =

δi(r
2)

2δi(gξφ)
, (A 36)

g
(η)
ξη =

∫ ξ

α

dξ̄
k2C sin η

D3
= k2

{
− 1

sin2 η

(
tan−1

(
D + C

S

)
− tan−1

(
Dα + Cα

Sα

))
−

(
C + 2

2S − Cα + 2

2Sα

)
−

(
C sin η

2D2 sinh ξ
− Cα sin η

2D2
α sinhα

)}
, (A 37)

Σ̂ηη = −P̂ +
2δi(gξφ)

j
δj (Ûη)

δiδj (g)
+

2riδiδj (gη)Ûξ

i

δiδj (g)
, (A 38)

Σ̂ηφ =
1

δj (gηφ)

{
rj δj (Ûφ) − δj (r)Ûφ

j

− δj (gη)Ûη

}
. (A 39)

Appendix B. Small deformation theory in the lubrication limit

The governing equations for Û (0)
r , Û

(0)
φ , Û (0)

z , P̂ (0), Û (f )
r , Û (f )

z and P̂ (f ) in (2.17)–(2.21)
are written as

1

R

∂(RÛ (0)
r )

∂R
+

Û
(0)
φ

R
+

∂Û (0)
z

∂Z
=

1

R

∂(RÛ (f )
r )

∂R
+

∂Û (f )
z

∂Z
= 0, (B 1)
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−∂P̂ (0)

∂R
+

∂2Û (0)
r

∂Z2
=

P̂ (0)

R
+

∂2Û
(0)
φ

∂Z2
=

∂P̂ (0)

∂Z

= −∂P̂ (f )

∂R
+

∂2Û (f )
r

∂Z2
=

∂P̂ (f )

∂Z
= 0, (B 2)

with the no-slip boundary condition on the plane wall

u = 0 at Z = 0, (B 3)

and the free-slip and kinematic boundary conditions on the bubble surface. The
deformed interface is located on the curve where H − δF̂ cosφ − Z = 0 holds. From
this relation, the normal unit vector n pointing outwards from the liquid on the
bubble surface is approximated by

n(R, φ) = −ez + erε
1/2

(
R − δ

dF̂

dR
cosφ

)
+ eφε

1/2δ
F̂

R
sinφ + · · · . (B 4)

Applying the Taylor expansion to a function q = q (0) + δ q (f ) + · · · in terms of the
deflection around the undeformed interface, one obtains a relation on the deformed
interface Z = H − δF̂ cos φ

q|interface = q|(0)
Z=H + δ

(
−F̂ cosφ

∂q (0)

∂Z

∣∣∣∣
Z=H

+ q|(f )
Z=H

)
+ · · · . (B 5)

Taking (B 4) and (B 5) into account, one writes the kinematic condition on the bubble
surface as

RÛ (0)
r − Û (0)

z − R = RÛ (f )
r − Û (f )

z − 1

2

dF̂

dR
Û (0)

r +
F̂

2R
Û

(0)
φ − F̂R

2

∂Û (0)
r

∂Z

+
F̂

2

∂Û (0)
z

∂Z
+

1

2

(
dF̂

dR
+

F̂

R

)
= 0 at Z = H, (B 6)

and the free-slip boundary condition as

∂Û (0)
r

∂Z
=

∂Û
(0)
φ

∂Z
=

∂Û (f )
r

∂Z
− F̂

2

∂2Û (0)
r

∂Z2
= 0 at Z = H. (B 7)

The vertical drag force acting on the bubble, which is involved in the second term
in the right-hand side of (2.3), is of order log ε, as determined for a motion of
a rigid sphere (Goldman et al. 1967; O’Neill & Stewartson 1967) by means of
the matched asymptotic expansion technique, and the normal stress on the bubble
surface is dominated by the pressure p =O(ε−3/2), as compared with ∂rur = O(ε−1/2),
ur/r = O(ε−1/2), uφ/r =O(ε−1/2) and ∂zuz = O(ε−1/2), which are related to the viscous
stresses. Hence, the Laplace law (2.3) is simplified to

d

dR

(
1

R

d(RF̂ )

dR

)
= P̂ (0), (B 8)

with no singularity conditions F̂ = 0 at R = 0 and F̂ → 0 as R → ∞.
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As obtained by Hodges et al. (2004), the leading-order and perturbed solutions are

Û (0)
r =

(6 − 9R2)

20H

(
Z2

H 2
− 2Z

H

)
, Û

(0)
φ = − 3

10

(
Z2

H 2
− 2Z

H

)
,

Û (0)
z =

(4R − R3)Z3

5H 4
+

(−42R + 3R3)Z2

20H 3
,

⎫⎪⎪⎬⎪⎪⎭ (B 9)

P̂ (0) =
3R

5H 2
, (B 10)

F̂ = −3 log H

5R
. (B 11)

Û (f )
r (R, Z) = A2(R)Z2 + A1(R)Z,

Û (f )
z (R, Z) = − 1

3R

d(RA2)

dR
Z3 − 1

2R

d(RA1)

dR
Z2,

⎫⎬⎭ (B 12)

P̂ (f )(R) =
∫ R

∞ dR̄ 2A2(R̄), (B 13)

where

A1 =
9(14 − R2) log H

100H 3R
, (B 14)

A2 = −9(4 − R2) log H

50H 4R
. (B 15)

Substituting (B 15) into (B 13) estimates the asymptotic order of the perturbed
pressure

ε−3/2δP̂ (f ) =
12ε−3Ca log(R2/2)

25R6
+ O(R−6) for R � 1, (B 16)

which is O(Ca log ε (ε1/2R)−6) in the overlapping region R ∼ ε−1/2, and thus to be
matched with the pressure of O(Ca log ε r−6) in the outer region (O’Neill & Stewartson
1967). This outer pressure may contribute to the lateral force of O(Ca log ε), which
is larger than that for the wide-gap case, corresponding to O(Ca). Nevertheless, as
discussed in Urzay et al. (2007), the rapid decay of the perturbed pressure for R � 1
indicates that the contribution of the outer pressure to the lateral force is negligibly
smaller than that of the inner pressure. Therefore, to evaluate the leading-order
migration force, one does not have to solve the outer problem. (In fact, the order of the
lateral force (B 20) evaluated only in the inner region is confirmed to be O(Caε−2) and
larger than the outer contribution O(Ca log ε).) The leading pressure ε−3/2P̂ (0) cosφ

with no deformation is locally dominant but does not contribute to the lateral force
due to its azimuthal cosine dependence. The viscous stress contribution to the lateral
force is O(ε) smaller than the pressure in the inner region. The deformation-induced
lateral force FM to cancel the migration velocity and to maintain the wall-parallel
motion is expressed as

FM ≈
∮

contact

d2x ε−3/2δP̂ (f ). (B 17)

The surface integral for a function q on the contact side is taken from the axis R =0
to the overlapping region, i.e.∮

contact

d2x q = ε

∫ 2π

0

dφ

∫ R

0

dR R q(R, φ), (B 18)
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where R = O(ε−1/2). For R � 1, one obtains an asymptotic relation∫ R

0

dR R P̂ (f )(R) = −
∫ R

0

dR R2A2(R) − R2

∫ ∞

R

dR A2(R)

=
3

100
+

6 log(R2/2)

25R4
+

1

5R4
+ O(R−6 log R) (B 19)

of which only the first term does not vanish as R → ∞. As obtained by Hodges et al.
(2004), consequently, the asymptotic solution of the deformation-induced lateral force
in the lubrication limit is

FM → lim
R→∞

ε

∫ 2π

0

dφ

∫ R

0

dR R ε−3/2δP̂ (f )(R)

=
3πCa

50
ε−2 as ε → 0. (B 20)
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